• Docs >
  • Find bottlenecks in your code (intermediate)
Shortcuts

Find bottlenecks in your code (intermediate)

Audience: Users who want to see more granular profiling information


Profile pytorch operations

To understand the cost of each PyTorch operation, use the PyTorchProfiler built on top of the PyTorch profiler.

from lightning.pytorch.profilers import PyTorchProfiler

profiler = PyTorchProfiler()
trainer = Trainer(profiler=profiler)

The profiler will generate an output like this:

Profiler Report

Profile stats for: training_step
---------------------  ---------------  ---------------  ---------------  ---------------  ---------------
Name                   Self CPU total %  Self CPU total   CPU total %      CPU total        CPU time avg
---------------------  ---------------  ---------------  ---------------  ---------------  ---------------
t                      62.10%           1.044ms          62.77%           1.055ms          1.055ms
addmm                  32.32%           543.135us        32.69%           549.362us        549.362us
mse_loss               1.35%            22.657us         3.58%            60.105us         60.105us
mean                   0.22%            3.694us          2.05%            34.523us         34.523us
div_                   0.64%            10.756us         1.90%            32.001us         16.000us
ones_like              0.21%            3.461us          0.81%            13.669us         13.669us
sum_out                0.45%            7.638us          0.74%            12.432us         12.432us
transpose              0.23%            3.786us          0.68%            11.393us         11.393us
as_strided             0.60%            10.060us         0.60%            10.060us         3.353us
to                     0.18%            3.059us          0.44%            7.464us          7.464us
empty_like             0.14%            2.387us          0.41%            6.859us          6.859us
empty_strided          0.38%            6.351us          0.38%            6.351us          3.175us
fill_                  0.28%            4.782us          0.33%            5.566us          2.783us
expand                 0.20%            3.336us          0.28%            4.743us          4.743us
empty                  0.27%            4.456us          0.27%            4.456us          2.228us
copy_                  0.15%            2.526us          0.15%            2.526us          2.526us
broadcast_tensors      0.15%            2.492us          0.15%            2.492us          2.492us
size                   0.06%            0.967us          0.06%            0.967us          0.484us
is_complex             0.06%            0.961us          0.06%            0.961us          0.481us
stride                 0.03%            0.517us          0.03%            0.517us          0.517us
---------------------  ---------------  ---------------  ---------------  ---------------  ---------------
Self CPU time total: 1.681ms

참고

When using the PyTorch Profiler, wall clock time will not not be representative of the true wall clock time. This is due to forcing profiled operations to be measured synchronously, when many CUDA ops happen asynchronously. It is recommended to use this Profiler to find bottlenecks/breakdowns, however for end to end wall clock time use the SimpleProfiler.


Profile a distributed model

To profile a distributed model, use the PyTorchProfiler with the filename argument which will save a report per rank.

from lightning.pytorch.profilers import PyTorchProfiler

profiler = PyTorchProfiler(filename="perf-logs")
trainer = Trainer(profiler=profiler)

With two ranks, it will generate a report like so:

Profiler Report: rank 0

Profile stats for: training_step
---------------------  ---------------  ---------------  ---------------  ---------------  ---------------
Name                   Self CPU total %  Self CPU total   CPU total %      CPU total        CPU time avg
---------------------  ---------------  ---------------  ---------------  ---------------  ---------------
t                      62.10%           1.044ms          62.77%           1.055ms          1.055ms
addmm                  32.32%           543.135us        32.69%           549.362us        549.362us
mse_loss               1.35%            22.657us         3.58%            60.105us         60.105us
mean                   0.22%            3.694us          2.05%            34.523us         34.523us
div_                   0.64%            10.756us         1.90%            32.001us         16.000us
ones_like              0.21%            3.461us          0.81%            13.669us         13.669us
sum_out                0.45%            7.638us          0.74%            12.432us         12.432us
transpose              0.23%            3.786us          0.68%            11.393us         11.393us
as_strided             0.60%            10.060us         0.60%            10.060us         3.353us
to                     0.18%            3.059us          0.44%            7.464us          7.464us
empty_like             0.14%            2.387us          0.41%            6.859us          6.859us
empty_strided          0.38%            6.351us          0.38%            6.351us          3.175us
fill_                  0.28%            4.782us          0.33%            5.566us          2.783us
expand                 0.20%            3.336us          0.28%            4.743us          4.743us
empty                  0.27%            4.456us          0.27%            4.456us          2.228us
copy_                  0.15%            2.526us          0.15%            2.526us          2.526us
broadcast_tensors      0.15%            2.492us          0.15%            2.492us          2.492us
size                   0.06%            0.967us          0.06%            0.967us          0.484us
is_complex             0.06%            0.961us          0.06%            0.961us          0.481us
stride                 0.03%            0.517us          0.03%            0.517us          0.517us
---------------------  ---------------  ---------------  ---------------  ---------------  ---------------
Self CPU time total: 1.681ms
Profiler Report: rank 1

Profile stats for: training_step
---------------------  ---------------  ---------------  ---------------  ---------------  ---------------
Name                   Self CPU total %  Self CPU total   CPU total %      CPU total        CPU time avg
---------------------  ---------------  ---------------  ---------------  ---------------  ---------------
t                      42.10%           1.044ms          62.77%           1.055ms          1.055ms
addmm                  32.32%           543.135us        32.69%           549.362us        549.362us
mse_loss               1.35%            22.657us         3.58%            60.105us         60.105us
mean                   0.22%            3.694us          2.05%            34.523us         34.523us
div_                   0.64%            10.756us         1.90%            32.001us         16.000us
ones_like              0.21%            3.461us          0.81%            13.669us         13.669us
sum_out                0.45%            7.638us          0.74%            12.432us         12.432us
transpose              0.23%            3.786us          0.68%            11.393us         11.393us
as_strided             0.60%            10.060us         0.60%            10.060us         3.353us
to                     0.18%            3.059us          0.44%            7.464us          7.464us
empty_like             0.14%            2.387us          0.41%            6.859us          6.859us
empty_strided          0.38%            6.351us          0.38%            6.351us          3.175us
fill_                  0.28%            4.782us          0.33%            5.566us          2.783us
expand                 0.20%            3.336us          0.28%            4.743us          4.743us
empty                  0.27%            4.456us          0.27%            4.456us          2.228us
copy_                  0.15%            2.526us          0.15%            2.526us          2.526us
broadcast_tensors      0.15%            2.492us          0.15%            2.492us          2.492us
size                   0.06%            0.967us          0.06%            0.967us          0.484us
is_complex             0.06%            0.961us          0.06%            0.961us          0.481us
stride                 0.03%            0.517us          0.03%            0.517us          0.517us
---------------------  ---------------  ---------------  ---------------  ---------------  ---------------
Self CPU time total: 1.681ms

This profiler will record training_step, validation_step, test_step, and predict_step. The output above shows the profiling for the action training_step.

참고

When using the PyTorch Profiler, wall clock time will not not be representative of the true wall clock time. This is due to forcing profiled operations to be measured synchronously, when many CUDA ops happen asynchronously. It is recommended to use this Profiler to find bottlenecks/breakdowns, however for end to end wall clock time use the SimpleProfiler.


Visualize profiled operations

To visualize the profiled operations, enable emit_nvtx in the PyTorchProfiler.

from lightning.pytorch.profilers import PyTorchProfiler

profiler = PyTorchProfiler(emit_nvtx=True)
trainer = Trainer(profiler=profiler)

Then run as following:

nvprof --profile-from-start off -o trace_name.prof -- <regular command here>

To visualize the profiled operation, you can either use nvvp:

nvvp trace_name.prof

or python:

python -c 'import torch; print(torch.autograd.profiler.load_nvprof("trace_name.prof"))'

© Copyright Copyright (c) 2018-2023, Lightning AI et al...

Built with Sphinx using a theme provided by Read the Docs.