Configure hyperparameters from the CLI (Advanced)¶
Customize arguments by subcommand¶
To customize arguments by subcommand, pass the config before the subcommand:
$ python main.py [before] [subcommand] [after]
$ python main.py ... fit ...
For example, here we set the Trainer argument [max_steps = 100] for the full training routine and [max_steps = 10] for testing:
# config.yaml
fit:
trainer:
max_steps: 100
test:
trainer:
max_epochs: 10
now you can toggle this behavior by subcommand:
# full routine with max_steps = 100
$ python main.py --config config.yaml fit
# test only with max_epochs = 10
$ python main.py --config config.yaml test
Run from cloud yaml configs¶
For certain enterprise workloads, Lightning CLI supports running from hosted configs:
$ python main.py [subcommand] --config s3://bucket/config.yaml
For more options, refer to Remote filesystems.
Use a config via environment variables¶
For certain CI/CD systems, it’s useful to pass in raw yaml config as environment variables:
$ python main.py fit --trainer "$TRAINER_CONFIG" --model "$MODEL_CONFIG" [...]
Run from environment variables directly¶
The Lightning CLI can convert every possible CLI flag into an environment variable. To enable this, add to
parser_kwargs
the default_env
argument:
cli = LightningCLI(..., parser_kwargs={"default_env": True})
now use the --help
CLI flag with any subcommand:
$ python main.py fit --help
which will show you ALL possible environment variables that can be set:
usage: main.py [options] fit [-h] [-c CONFIG]
...
optional arguments:
...
ARG: --model.out_dim OUT_DIM
ENV: PL_FIT__MODEL__OUT_DIM
(type: int, default: 10)
ARG: --model.learning_rate LEARNING_RATE
ENV: PL_FIT__MODEL__LEARNING_RATE
(type: float, default: 0.02)
now you can customize the behavior via environment variables:
# set the options via env vars
$ export PL_FIT__MODEL__LEARNING_RATE=0.01
$ export PL_FIT__MODEL__OUT_DIM=5
$ python main.py fit
Set default config files¶
To set a path to a config file of defaults, use the default_config_files
argument:
cli = LightningCLI(MyModel, MyDataModule, parser_kwargs={"default_config_files": ["my_cli_defaults.yaml"]})
or if you want defaults per subcommand:
cli = LightningCLI(MyModel, MyDataModule, parser_kwargs={"fit": {"default_config_files": ["my_fit_defaults.yaml"]}})
Enable variable interpolation¶
In certain cases where multiple settings need to share a value, consider using variable interpolation. For instance:
model:
encoder_layers: 12
decoder_layers:
- ${model.encoder_layers}
- 4
To enable variable interpolation, first install omegaconf:
pip install omegaconf
Then set omegaconf when instantiating the LightningCLI
class:
cli = LightningCLI(MyModel, parser_kwargs={"parser_mode": "omegaconf"})
After this, the CLI will automatically perform interpolation in yaml files:
python main.py --model.encoder_layers=12
For more details about the interpolation support and its limitations, have a look at the jsonargparse and the omegaconf documentations.
참고
There are many use cases in which variable interpolation is not the correct approach. When a parameter must
always be derived from other settings, it shouldn’t be up to the CLI user to do this in a config file. For
example, if the data and model both require batch_size
and must be the same value, then
Argument linking should be used instead of interpolation.