ModelPruning¶
- class lightning.pytorch.callbacks.ModelPruning(pruning_fn, parameters_to_prune=(), parameter_names=None, use_global_unstructured=True, amount=0.5, apply_pruning=True, make_pruning_permanent=True, use_lottery_ticket_hypothesis=True, resample_parameters=False, pruning_dim=None, pruning_norm=None, verbose=0, prune_on_train_epoch_end=True)[소스]¶
기반 클래스:
lightning.pytorch.callbacks.callback.Callback
Model pruning Callback, using PyTorch’s prune utilities. This callback is responsible of pruning networks parameters during training.
To learn more about pruning with PyTorch, please take a look at this tutorial.
경고
This is an experimental feature.
parameters_to_prune = [(model.mlp_1, "weight"), (model.mlp_2, "weight")] trainer = Trainer( callbacks=[ ModelPruning( pruning_fn="l1_unstructured", parameters_to_prune=parameters_to_prune, amount=0.01, use_global_unstructured=True, ) ] )
When
parameters_to_prune
isNone
,parameters_to_prune
will contain all parameters from the model. The user can overridefilter_parameters_to_prune
to filter anynn.Module
to be pruned.- 매개변수
pruning_fn¶ (
Union
[Callable
,str
]) – Function from torch.nn.utils.prune module or your own PyTorchBasePruningMethod
subclass. Can also be string e.g. “l1_unstructured”. See pytorch docs for more details.parameters_to_prune¶ (
Sequence
[Tuple
[Module
,str
]]) – List of tuples(nn.Module, "parameter_name_string")
.parameter_names¶ (
Optional
[List
[str
]]) – List of parameter names to be pruned from the nn.Module. Can either be"weight"
or"bias"
.use_global_unstructured¶ (
bool
) – Whether to apply pruning globally on the model. Ifparameters_to_prune
is provided, global unstructured will be restricted on them.amount¶ (
Union
[int
,float
,Callable
[[int
],Union
[int
,float
]]]) –Quantity of parameters to prune:
float
. Between 0.0 and 1.0. Represents the fraction of parameters to prune.int
. Represents the absolute number of parameters to prune.Callable
. For dynamic values. Will be called every epoch. Should return a value.
apply_pruning¶ (
Union
[bool
,Callable
[[int
],bool
]]) –Whether to apply pruning.
bool
. Always apply it or not.Callable[[epoch], bool]
. For dynamic values. Will be called every epoch.
make_pruning_permanent¶ (
bool
) – Whether to remove all reparametrization pre-hooks and apply masks when training ends or the model is saved.use_lottery_ticket_hypothesis¶ (
Union
[bool
,Callable
[[int
],bool
]]) –See The lottery ticket hypothesis:
bool
. Whether to apply it or not.Callable[[epoch], bool]
. For dynamic values. Will be called every epoch.
resample_parameters¶ (
bool
) – Used withuse_lottery_ticket_hypothesis
. If True, the model parameters will be resampled, otherwise, the exact original parameters will be used.pruning_dim¶ (
Optional
[int
]) – If you are using a structured pruning method you need to specify the dimension.pruning_norm¶ (
Optional
[int
]) – If you are usingln_structured
you need to specify the norm.verbose¶ (
int
) – Verbosity level. 0 to disable, 1 to log overall sparsity, 2 to log per-layer sparsityprune_on_train_epoch_end¶ (
bool
) – whether to apply pruning at the end of the training epoch. If this isFalse
, then the check runs at the end of the validation epoch.
- 예외 발생
MisconfigurationException – If
parameter_names
is neither"weight"
nor"bias"
, if the providedpruning_fn
is not supported, ifpruning_dim
is not provided when"unstructured"
, ifpruning_norm
is not provided when"ln_structured"
, ifpruning_fn
is neitherstr
nortorch.nn.utils.prune.BasePruningMethod
, or ifamount
is none ofint
,float
andCallable
.
- apply_lottery_ticket_hypothesis()[소스]¶
Lottery ticket hypothesis algorithm (see page 2 of the paper):
Randomly initialize a neural network f(x; \theta_0) (where \theta_0 \sim \mathcal{D}_\theta).
Train the network for j iterations, arriving at parameters \theta_j.
Prune p\% of the parameters in \theta_j, creating a mask m.
Reset the remaining parameters to their values in \theta_0, creating the winning ticket f(x; m \odot \theta_0).
This function implements the step 4.
The
resample_parameters
argument can be used to reset the parameters with a new \theta_z \sim \mathcal{D}_\theta- 반환 형식
- filter_parameters_to_prune(parameters_to_prune=())[소스]¶
This function can be overridden to control which module to prune.
- make_pruning_permanent(module)[소스]¶
Removes pruning buffers from any pruned modules.
Adapted from https://github.com/pytorch/pytorch/blob/v1.7.1/torch/nn/utils/prune.py#L1118-L1122
- 반환 형식
- on_save_checkpoint(trainer, pl_module, checkpoint)[소스]¶
Called when saving a checkpoint to give you a chance to store anything else you might want to save.
- 매개변수
pl_module¶ (
LightningModule
) – the currentLightningModule
instance.checkpoint¶ (
Dict
[str
,Any
]) – the checkpoint dictionary that will be saved.
- 반환 형식
- on_train_epoch_end(trainer, pl_module)[소스]¶
Called when the train epoch ends.
To access all batch outputs at the end of the epoch, you can cache step outputs as an attribute of the
pytorch_lightning.LightningModule
and access them in this hook:class MyLightningModule(L.LightningModule): def __init__(self): super().__init__() self.training_step_outputs = [] def training_step(self): loss = ... self.training_step_outputs.append(loss) return loss class MyCallback(L.Callback): def on_train_epoch_end(self, trainer, pl_module): # do something with all training_step outputs, for example: epoch_mean = torch.stack(pl_module.training_step_outputs).mean() pl_module.log("training_epoch_mean", epoch_mean) # free up the memory pl_module.training_step_outputs.clear()
- 반환 형식